BACTERIAL MENINGITIS AND PEDIATRIC SENSORINEURAL HEARING LOSS IN THE POST-PCV13 ERA.

Shilpa Tummala, BA; Kaitlyn Tholen, BS; Maxene Meier, MS; Brian Herrmann, MD; Juri Boguniewicz, MD; Satish Ghotmeh, MD

1. University of Colorado Anschutz School of Medicine, 13200 1st Pl East, Aurora, CO 80040
2. Children’s Hospital of Colorado (CHCO), Anschutz Medical Campus, Department of Otolaryngology—Pediatric, 13123 East 16th Avenue, Aurora, CO 80040
3. Center for Research Outcomes in Children’s Surgery, Center for Children’s Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80040
4. Children’s Hospital of Colorado (CHCO), Anschutz Medical Campus (CHCO), Department of Infectious Disease—Pediatrics, 13123 East 16th Avenue, Aurora, CO 80040

The authors do not have any relevant financial conflicts to disclose.

ABSTRACT

INTRODUCTION: Bacterial meningitis is the most common cause of postnatally-acquired sensorineural hearing loss (SNHL). Prognostic associations are lacking for pediatric SNHL due to Streptococcus pneumoniae bacterial meningitis after the introduction of updated pneumococcal vaccine (PCV13) in 2010. OBJECTIVES: 1) To assess clinical presentation of meningitis based on bacterial etiology in children and identify associations with post-menignitic SNHL in children after 2010. 2) To describe rates of S. pneumoniae-associated post-menignitic SNHL based on three time periods: pre-PCV, post-PCV7 and post-PCV13. METHODS: A retrospective review was performed for patients 18 years and younger diagnosed with meningitis after January 1, 2010. Patients were identified by history of positive CSF bacterial culture or FilmArray Meningitis/Encephalitis Panel (MEP) assay. Clinical data were stratified by bacterial etiology, analyzed for clinically relevant characteristics, and compared with previously reported rates of post-menignitic SNHL. RESULTS: In a cohort of 147 patients with positive CSF cultures, 91 (61.9%) met inclusion criteria. Seventy-one (mean age 21 months; 56% male) had audiograms after diagnosis and were divided into four subgroups based on bacterial etiology: S. pneumoniae (n=20), Group B streptococcus (GBS, n=25), Haemophilus influenzae (n=10), and Other (n=16). Of those with hearing evaluations, SNHL was reported in 15 patients (21%), most frequently in the S. pneumoniae group (n=10, 47%, 20% for GBS). Children in the PCV13 vaccination era had a similar rate of post-menignitic SNHL (42%) as historical pediatric cohorts in the pre-PCV vaccination time period (23.8%), and the PCV7 vaccination time period (35%) (Fishier’s exact, p=0.19). CONCLUSION: Despite advances in vaccine development for S. pneumoniae, SNHL remains a common long-term complication of this disease. Further research into predicting and preventing this outcome is necessary.

BACKGROUND

- Bacterial meningitis (BM) accounts for 60-90% of all pediatric sensorineural hearing loss (SNHL) cases and is associated with significant morbidity and mortality in children.
- The two most common causes of postnatally acquired SNHL cases are H. influenzae type B (HiB) and S. pneumoniae.
- Vaccines against HiB and S. pneumoniae have dramatically reduced incidence of bacterial meningitis.
- However, the incidence of pediatric SNHL due to pneumococcal meningitis has remained stable at 28-33% between the years of 2007-2013.
- Hearing loss has significant effects on childhood development, contributing to delays in language development and academic performance.
- No prior studies have compared bacterial meningitis and hearing outcomes from children in the pre-PCV, post-PCV7 and post-PCV13 eras.

OBJECTIVES

- To present a pediatric cohort of patients with bacterial meningitis and SNHL in the post-PCV13 era.
- To compare historical data about bacterial meningitis and SNHL from the pre-PCV and post-PCV era with a post-PCV13 pediatric cohort.

METHODS AND MATERIALS

- Institutional review board approval was obtained.
- Chart review of patients with spontaneous bacterial meningitis from 2010-2020.
- Inclusion criteria: CHCO patients diagnosed with spontaneous bacterial meningitis on or after January 1, 2010. Age 18 years or younger at time of diagnosis. Diagnosis must be made by positive CSF cultures.
- Exclusion criteria: Patients with known underlying immunodeficiencies, on biologic agents such as monoclonal antibodies or with bacterial meningitis related to trauma, a shunt infection or a neurological procedure. Patients without culture or PCR-confirmed meningitis due to bacterial etiology.
- Data was compared with previously reported rates of post-menignitic SNHL.

RESULTS

Demographics and Clinical Characteristics stratified by Bacterial Etiology

<table>
<thead>
<tr>
<th>Bacterial Etiology</th>
<th>Hi. flu (n=10)</th>
<th>Other (n=16)</th>
<th>GBS (n=25)</th>
<th>S. pneumoniae (n=20)</th>
<th>Total (N=71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5 (50%)</td>
<td>4 (25%)</td>
<td>21 (84%)</td>
<td>15 (75%)</td>
<td>52 (74%)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>3 (30%)</td>
<td>3 (19%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>6 (9%)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0%)</td>
<td>1 (6%)</td>
<td>1 (4%)</td>
<td>1 (5%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>More than one race</td>
<td>2 (20%)</td>
<td>1 (6%)</td>
<td>1 (4%)</td>
<td>1 (5%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>1 (6%)</td>
<td>5 (20%)</td>
<td>3 (15%)</td>
<td>9 (13%)</td>
</tr>
</tbody>
</table>

Table 1. Demographics and Clinical Characteristics stratified by Bacterial Etiology

<table>
<thead>
<tr>
<th>Hi. flu</th>
<th>Other</th>
<th>GBS</th>
<th>S. pneumoniae</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (%)</td>
<td>62%</td>
<td>56%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Deceased %</td>
<td>4%</td>
<td>6%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 2. Outcomes for patients with bacterial meningitis stratified by bacterial etiology

<table>
<thead>
<tr>
<th>Bacterial Etiology</th>
<th>Hi. flu (n=10)</th>
<th>Other (n=16)</th>
<th>GBS (n=25)</th>
<th>S. pneumoniae (n=20)</th>
<th>Total (N=71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing Loss?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (%)</td>
<td>6 (60%)</td>
<td>10 (62%)</td>
<td>19 (76%)</td>
<td>9 (45%)</td>
<td>44 (62%)</td>
</tr>
<tr>
<td>No (%)</td>
<td>4 (40%)</td>
<td>6 (38%)</td>
<td>6 (24%)</td>
<td>11 (55%)</td>
<td>27 (39%)</td>
</tr>
<tr>
<td>Deceased (%)</td>
<td>1 (10%)</td>
<td>2 (12%)</td>
<td>4 (16%)</td>
<td>10 (50%)</td>
<td>17 (24%)</td>
</tr>
</tbody>
</table>

DISCUSSION

- We present a novel analysis of post-menignant SNHL in a pediatric cohort after the introduction of the PCV13 vaccine in 2010.
- Prior studies from the pre-PCV7 and PCV7-vaccinated era have reported similar rates of post-menignant SNHL as our pediatric cohort.
- Our results indicate a need for further exploration of predictive markers in the pathogenesis of post-menignant SNHL, particularly in pediatric pneumococcal populations.

CONCLUSION

- Advances in vaccine development have helped reduce incidence of bacterial meningitis in the US due to H. influenzae and S. pneumoniae.
- Rates of SNHL within post-pneumococcal meningitis populations remain constant in pediatric cohorts since the introduction of PCV7 and PCV13.
- Future directions include univariate testing and potential multivariate analysis if more patients are added that meet inclusion criteria.

References

Contact

Shilpa Tummala
Phone: 602-309-9702
Email: shilpa.tummala@cuanschutz.edu

University of Colorado Anschutz Medical Campus