Greater propensity for adipogenesis and adipocyte hypertrophy in mesenchymal stem cells from infants of mothers with obesity

Madeline Rose Kelehera,b, Shreya Shubhangia, Asya Browna, Allison Duensinga, Dana Dabeleab, and Kristen E. Boylea,b

Introduction

- In maternal obesity, infants born with greater adiposity3, but unclear if this is due to greater adipocyte number (hyperplasia) or size (hypertrophy) (Fig. 1).
- Animal models show maternal obesity induces adipocyte hypertrophy in offspring, mediated in part by ↑ Zfp4232; unknown if this occurs in humans.
- Mesenchymal stem cells (MSCs) differentiate into fat cells (and other cell types); comparing MSCs from umbilical cords of human infants of mothers with obesity (Ob-MSCs) vs. normal weight mothers (NW-MSCs), we previously found ↑ adipogenesis in Ob-MSCs, correlated with adiposity at birth3.
- Hypothesis: Adipocytes differentiating from Ob-MSCs will store more fat and be larger (hypertrophic) compared to adipocytes from NW-MSCs.

Methods

- Harvested MSCs from Healthy Start infants’ umbilical cords (Table 1).
- Used all 19 Ob-MSCs, 20 NW-MSCs matched for sex, gestational age, MSC time to confluence.
- Embedded MSCs in hydrogels for 3-Dimensional cell culture (Fig. 2).
- Induced adipogenesis in vitro for 14 days (Fig. 3).
- Stained with BODIPY (lipids), Wheat Germ Agglutinin (cell surface), and DAPI (nuclear stain).
- Imaged MSCs using confocal microscopy, quantified fluorescence with Fiji.
- Measured proteins (Fig. 7) with Simple Western (WES).
- Determined morphological differences between Ob-MSCs and NW-MSCs using t-test, tested protein pathway differences with MANOVA.

Citations

Results

- Ob-MSCs have 62% lower proliferation during adipogenesis.
- Ob-MSCs have higher levels of adipogenesis proteins, indicating they may be primed for adipogenesis.
- Ob-MSCs have 73% larger than NW-MSCs.
- Ob-MSCs store 72% more lipid.
- Greater propensity for adipogenesis and adipocyte hypertrophy in mesenchymal stem cells from infants of mothers with obesity.

Discussion

- Compared to NW-MSCs, Ob-MSCs: are larger and store more fat, have lower rates of proliferation early in adipogenesis, and have more adipogenic proteins before differentiation.
- Across all MSCs, adipogenesis measures are associated with neonatal body composition and serum cardiometabolic measures in childhood.
- Inherent propensity for adipocyte hypertrophy in infant MSCs may explain offspring predisposition for obesity and metabolic disease.

Funding

ADA: 1-18-ICTS-016 (Boyle)
NIH: R01DK076648; NCT02723297 (Dabelea)
NIH: 1UG3OD023248-01 (Dabelea)