Integrated Analysis of miRNA-mRNA Interaction in Pediatric Dilated Cardiomyopathy

Frehwiesl T. Hallu1, Anis Karimpour-Fard1, Lee S. Ton1, Michael R. Bristow1, Shelley D. Miyamoto1, Brian L. Stauffer1,2, Carmen C. Sucharov1*

1 Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
2 Department of Pharmacology, University of Colorado, Aurora, Colorado, USA.
3 Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA.
4Division of Cardiology, Denver Health and Hospital Authority, Denver, Colorado, USA.

Background

- Research-focused studies have resulted in beneficial therapies for adults with heart failure (HF), as measured by significant improvement in morbidity and mortality in this population.
- In contrast, though the same therapeutic guidelines developed from adult clinical trials have been applied to children with HF, improvement in clinical outcomes has been minimal, which has resulted in limited survival in this population.
- Our previous studies using pediatric dilated cardiomyopathy (DCM) hearts identified unique age-dependent cellular and molecular characteristics including changes in miRNAs.
- MicroRNAs (miRNAs) are short single stranded nucleotides that can regulate gene expression.
- Although expression of miRNAs in pediatric dilated cardiomyopathy (DCM) has been evaluated by miRNA array, pathway prediction based on changes in miRNA expression has not been previously analyzed in this study.
- The current study aimed to determine regulation of miRNA expression by miRNA-Seq and, through miRNA-Seq, analyze their putative target genes and altered pathways in pediatric DCM hearts.

Methods

- miRNA expression was determined by miRNA-Seq in pediatric DCM patients (n=10 non-failing (NF), n=20 DCM).
- Expression of a subset of miRNAs was evaluated in adult DCM patients (n=11 NF, n=13 DCM).
- miRNA-mRNA prediction analysis was performed using miRNA-Seq data (n=7 NF, n=7 DCM) from matched samples.
- Functional analysis of putative target genes was performed using PANTHER and ingenuity pathway analysis (IPA).

Results

Figure 1. miRNA expression analysis in pediatric DCM patients and NF controls (A) 393 (227 miRNAs up-regulated, 166 miRNAs down-regulated) miRNAs significantly differentially expressed in the heart of pediatric DCM patients (B) 45 miRNAs with high FPKMs differentially expressed in pediatric DCM compared to the non failing control.

Table 1. IPA enriched top canonical pathways related to the miRNAs changed by RNA-Seq that are predicted targets of significantly differentially regulated miRNAs in the heart of pediatric DCM patients.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>log(p-value)</th>
<th>log(2) expression</th>
<th>Number of miRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Hypertrophy Signaling (Enhanced)</td>
<td>1.06</td>
<td>2.74</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Hypoplasia</td>
<td>0.75</td>
<td>1.27</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Damage</td>
<td>0.80</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>0.97</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Enlargement</td>
<td>1.08</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Ventricular NCC-Dependent Death</td>
<td>1.10</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac NCC-Dependent Death</td>
<td>1.10</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac NCC-Dependent Death</td>
<td>1.10</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac NCC-Dependent Death</td>
<td>1.10</td>
<td>1.34</td>
<td>1</td>
</tr>
</tbody>
</table>

Summary

- Several miRNAs are altered in pediatric DCM patients compared to NF control.
- Age- and sex-specific regulation of miRNAs has been identified in pediatric DCM patients.
- The putative target genes of dysregulated miRNAs are related to biological processes such as cardiac muscle contraction, positive regulation of stem cell differentiation and cellular process and are involved in pathways related to cardiac toxicity.
- Therefore, further investigations of the implication of dysregulated miRNAs in the hearts of children with DCM may help lead to identification of potential age-specific miRNA-based therapies.

Conclusions

- Our results demonstrated a unique age-dependent regulation of miRNAs and their putative target genes which may contribute to distinctive phenotypic characteristics of DCM in children.

Impact

- This is the first study to compare miRNA expression in the heart of pediatric dilated cardiomyopathy patients to age-matched healthy controls by RNA-sequencing.
- Expression of a subset of miRNAs is uniquely dysregulated in children.
- Using miRNA-seq and mRNA-seq from matched samples, target prediction was performed.
- This study underscore the importance of pediatric-focused studies.

Acknowledgements

- This work was supported by the National Institutes of Health grants [3R01 HL139968-01S1 to (FTH), K24 HL150630 to (CCS), R01 HL139968 to CCS, SDM], R01 HL107715-01A1S1 and R01 HL107715 to (BLS), the Jack Cooper Millisor Chair in Pediatric Heart Disease, the Rose Community Foundation, and the Colorado CTSA Grant [UL1 TR002555].
- Special thanks to members of the Pediatric Cardiovascular Research Lab and to all great collaborators.