Genetic Architecture of Familial Vitiligo

Genevieve Andersen
PI: Richard Spritz

The Power of Informatics to Advance Health Symposium
Heritability = The proportion of phenotypic variance attributable to genetic factors

→ Broad Sense H^2 = any form of genetic variation
→ Narrow Sense h^2 = additive genetic variation

Missing Heritability = $\hat{h}^2_{\text{PED}} - \hat{h}^2_{\text{SNP}}$

Variants associated with complex traits generally explain only a small proportion of total h^2_{PED}
Proposed Sources of “Missing Heritability”

• Unobserved variants
 § Structural variants
• Insufficient power to identify associated variants
 § Rare variants
 § Many variants with very small effect sizes
• Non-additive effects
 § Gene-gene interaction (epistasis)
 § Gene-environment interaction
 § Dominance effects
• Overestimation of h^2 in family-based studies
 § Shared environment of close relatives

- The genetic architecture of familial and sporadic complex disease are different??
Vitiligo

- Autoimmune destruction of skin melanocytes
- Prevalence ~0.2-2.0% (~0.4% in Europeans)
- Genetically complex
 - $\hat{h}^2_{\text{PED}} \sim 75\%$
 - Estimates range from 46% to 84%
 - $\hat{h}^2_{\text{SNP}} \sim 50\%$
 - ~22.5% of h^2_{SNP} is explained by 50 genome-wide significant loci
Do we really expect the genetic architecture of vitiligo in the **Multiplex Family Case** to be similar to the **Sporadic Case**?

- **Sporadic Vitiligo**
 - 0% of cases for vitiligo h^2_{PED} estimation
 - ~88% of cases for vitiligo h^2_{SNP} estimation

- **Multiplex Vitiligo**
 - 100% of cases for h^2_{PED} estimation
 - ~12% of cases for h^2_{SNP} estimation
Polygenic Inheritance

Genetic Risk Score

Disease Threshold

GWAS Loci

Disease Susceptibility

Polygenic

Oligogenic

Near-Mendelian

Mendelian
Genetic Risk Score

\[
\sum_{i} \beta_i G_i
\]

of autosomal variants identified by vitiligo GWAS

\[\ln(OR)\]

of Risk Alleles

Low Risk Score

High Risk Score

Low Vitiligo Risk

High Vitiligo Risk

\[\Delta = 1.05 \text{ s.d.}\]

\[P < 10^{-100}\]
Polygenic Inheritance

Genetic Risk Score

Disease Threshold

GWAS Loci

Disease Susceptibility

Polygenic

Oligogenic

Near-Mendelian

Mendelian

Monogenic Inheritance

Linkage Analysis
Table 1

<table>
<thead>
<tr>
<th>Chromosome and Distance</th>
<th>Marker(s)</th>
<th>LOD (P) in 71 Families</th>
<th>LOD (P) in 102 Families</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>71 Families*</td>
<td>102 Families</td>
</tr>
<tr>
<td>1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 cM</td>
<td>D1S214</td>
<td>2.17 (.000335)</td>
<td>NS</td>
</tr>
<tr>
<td>73.7 cM</td>
<td>D1S2797-D1S2890</td>
<td>5.56 (.000000282)</td>
<td>5.59 (.000000279)</td>
</tr>
<tr>
<td>7:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.4 cM</td>
<td>D7S669</td>
<td>2.87 (.000131)</td>
<td>3.73 (.0000208)</td>
</tr>
<tr>
<td>8:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.2 cM</td>
<td>D8S505</td>
<td>1.95 (.00135)</td>
<td>3.36 (.0000418)</td>
</tr>
<tr>
<td>9:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1 cM</td>
<td>D9S167-D9S283</td>
<td>NS</td>
<td>2.34 (.000238)</td>
</tr>
<tr>
<td>11:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 cM</td>
<td>D11S4046-D11S1338</td>
<td>1.93 (.00142)</td>
<td>NS</td>
</tr>
<tr>
<td>13:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109.4 cM</td>
<td>D13S173</td>
<td>NS</td>
<td>2.30 (.000563)</td>
</tr>
<tr>
<td>17:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 cM</td>
<td>D17S849-D17S831</td>
<td>NS</td>
<td>3.07 (.0000852)</td>
</tr>
<tr>
<td>19:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.9 cM</td>
<td>D19S221-D19S226</td>
<td>2.45 (.000388)</td>
<td>2.62 (.000254)</td>
</tr>
<tr>
<td>107.8 cM</td>
<td>D19S210</td>
<td>2.31 (.000551)</td>
<td>NS</td>
</tr>
<tr>
<td>22:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7 cM</td>
<td>D22S420-D22S539</td>
<td>2.30 (.000561)</td>
<td>2.98 (.000106)</td>
</tr>
</tbody>
</table>
• 13 vitiligo cases
• Identified promoter variant in *FOXD3* (regulator of melanocyte differentiation)
• LOD score maximizes at a penetrance of ~52%
Polygenic Inheritance

Monogenic Inheritance

Disease Threshold

My Prediction:

Sporadic Cases

Familial Cases

Polygenic
Oligogenic
Near-Mendelian
Mendelian

High Genetic Risk Score

Low Genetic Risk Score
Risk Score in Multiplex Probands

\[\Delta = 0.17 \text{ s.d.} \]

\[P = 0.003 \]

Normalized Risk Score

Sporadic Cases

Multiplex Probands
Risk Score in Multiplex Probands

Multiplex Probands by Family Type

- Large Mpx (3-4 Affected): 38%
- Sib Pair: 26%
- Trios: 22%
- Small Mpx: 14%

Normalized Risk Score

- Affected Sib Pairs
- Parent-offspring Trios
- Small Mpx (3-4 Affected Members)
- Large Mpx (5+ Affected Members)
Risk Score in Multiplex Probands

Normalized Risk Score

Highest quintile for vitiligo cases!!
In Summary...

- Family studies estimate h^2
- Similar genetic architecture sporadic vs. familial vitiligo?
- Compared risk score
- Risk score is HIGHER in multiplex cases
- Implications:
 - Polygenic inheritance in multiplex families
 - Familial genetic architecture & heritability similar in sporadic and familial cases
 - Family h^2 good estimate for sporadic h^2
There was a typo in my previous email. It should, of course, read: “please focus completely on GENOME research”